Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.008
1.
BMC Infect Dis ; 24(1): 494, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745289

BACKGROUND: Brain-heart infusion agar supplemented with 4 µg/mL of vancomycin (BHI-V4) was commonly used for the detection of heterogeneous (hVISA) and vancomycin-intermediate Staphylococcus aureus (VISA). However, its diagnostic value remains unclear. This study aims to compare the diagnostic accuracy of BHI-V4 with population analysis profiling with area under the curve (PAP-AUC) in hVISA/VISA. METHODS: The protocol of this study was registered in INPLASY (INPLASY2023120069). The PubMed and Cochrane Library databases were searched from inception to October 2023. Review Manager 5.4 was used for data visualization in the quality assessment, and STATA17.0 (MP) was used for statistical analysis. RESULTS: In total, eight publications including 2153 strains were incorporated into the meta-analysis. Significant heterogeneity was evident although a threshold effect was not detected across the eight studies. The summary receiver operating characteristic (SROC) was 0.77 (95% confidence interval [CI], 0.74-0.81). The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic score and diagnostic odds ratio were 0.59 (95% CI: 0.46-0.71), 0.96 (95%CI: 0.83-0.99), 14.0 (95% CI, 3.4-57.1), 0.43 (95%CI, 0.32-0.57), 3.48(95%CI, 2.12-4.85) and 32.62 (95%CI, 8.31-128.36), respectively. CONCLUSION: Our study showed that BHI-V4 had moderate diagnostic accuracy for diagnosing hVISA/VISA. However, more high-quality studies are needed to assess the clinical utility of BHI-V4.


Anti-Bacterial Agents , Microbial Sensitivity Tests , Staphylococcal Infections , Staphylococcus aureus , Vancomycin , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/diagnosis , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Sensitivity and Specificity , Vancomycin Resistance , Culture Media , Area Under Curve
2.
Gut Microbes ; 16(1): 2342583, 2024.
Article En | MEDLINE | ID: mdl-38722061

Vancomycin and metronidazole are commonly used treatments for Clostridioides difficile infection (CDI). However, these antibiotics have been associated with high levels of relapse in patients. Fidaxomicin is a new treatment for CDI that is described as a narrow spectrum antibiotic that is minimally active on the commensal bacteria of the gut microbiome. The aim of this study was to compare the effect of fidaxomicin on the human gut microbiome with a number of narrow (thuricin CD) and broad spectrum (vancomycin and nisin) antimicrobials. The spectrum of activity of each antimicrobial was tested against 47 bacterial strains by well-diffusion assay. Minimum inhibitory concentrations (MICs) were calculated against a select number of these strains. Further, a pooled fecal slurry of 6 donors was prepared and incubated for 24 h with 100 µM of each antimicrobial in a mini-fermentation system together with a no-treatment control. Fidaxomicin, vancomycin, and nisin were active against most gram positive bacteria tested in vitro, although fidaxomicin and vancomycin produced larger zones of inhibition compared to nisin. In contrast, the antimicrobial activity of thuricin CD was specific to C. difficile and some Bacillus spp. The MICs showed similar results. Thuricin CD exhibited low MICs (<3.1 µg/mL) for C. difficile and Bacillus firmus, whereas fidaxomicin, vancomycin, and nisin demonstrated lower MICs for all other strains tested when compared to thuricin CD. The narrow spectrum of thuricin CD was also observed in the gut model system. We conclude that the spectrum of activity of fidaxomicin is comparable to that of the broad-spectrum antibiotic vancomycin in vitro and the broad spectrum bacteriocin nisin in a complex community.


Anti-Bacterial Agents , Feces , Fidaxomicin , Gastrointestinal Microbiome , Microbial Sensitivity Tests , Nisin , Vancomycin , Nisin/pharmacology , Anti-Bacterial Agents/pharmacology , Humans , Fidaxomicin/pharmacology , Vancomycin/pharmacology , Gastrointestinal Microbiome/drug effects , Feces/microbiology , Bacteria/drug effects , Bacteria/classification , Clostridioides difficile/drug effects , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Bacteriocins/pharmacology
3.
Mikrochim Acta ; 191(6): 305, 2024 05 07.
Article En | MEDLINE | ID: mdl-38713444

A multifunctional surface-enhanced Raman scattering (SERS) platform integrating sensitive detection and drug resistance analysis was developed for Gram-positive bacteria. The substrate was based on self-assembled Ti3C2Tx@Au NPs films and capture molecule phytic acid (IP6) to achieve specific capture of Gram-positive bacteria and different bacteria were analyzed by fingerprint signal. It had advantages of good stability and homogeneity (RSD = 8.88%). The detection limit (LOD) was 102 CFU/mL for Staphylococcus aureus and 103 CFU/mL for MRSA, respectively. A sandwich structure was formed on the capture substrate by signal labels prepared by antibiotics (penicillin G and vancomycin) and non-interference SERS probe molecules (4-mercaptobenzonitrile (2223 cm-1) and 2-amino-4-cyanopyridine (2240 cm-1)) to improve sensitivity. The LOD of Au NPs@4-MBN@PG to S. aureus and Au NPs@AMCP@Van to MRSA and S. aureus were all improved to 10 CFU/mL, with a wide dynamic linear range from 108 to 10 CFU/mL (R2 ≥ 0.992). The SERS platform can analyze the drug resistance of drug-resistant bacteria. Au NPs@4-MBN@PG was added to the substrate and captured MRSA to compare the SERS spectra of 4-MBN. The intensity inhomogeneity of 4-MBN at the same concentrations of MRSA and the nonlinearity at the different concentrations of MRSA revealed that MRSA was resistant to PG. Finally, the SERS platform achieved the determination of MRSA in blood. Therefore, this SERS platform has great significance for the determination and analysis of Gram-positive bacteria.


Anti-Bacterial Agents , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Staphylococcus aureus , Titanium , Spectrum Analysis, Raman/methods , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Vancomycin/pharmacology , Vancomycin/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Penicillin G/pharmacology , Penicillin G/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
4.
Int J Nanomedicine ; 19: 3991-4005, 2024.
Article En | MEDLINE | ID: mdl-38720939

Purpose: Surgical site infections pose a significant challenge for medical services. Systemic antibiotics may be insufficient in preventing bacterial biofilm development. With the local administration of antibiotics, it is easier to minimize possible complications, achieve drugs' higher concentration at the injured site, as well as provide their more sustained release. Therefore, the main objective of the proposed herein studies was the fabrication and characterization of innovative hydrogel-based composites for local vancomycin (VAN) therapy. Methods: Presented systems are composed of ionically gelled chitosan particles loaded with vancomycin, embedded into biomimetic collagen/chitosan/hyaluronic acid-based hydrogels crosslinked with genipin and freeze-dried to serve in a flake/disc-like form. VAN-loaded carriers were characterized for their size, stability, and encapsulation efficiency (EE) using dynamic light scattering technique, zeta potential measurements, and UV-Vis spectroscopy, respectively. The synthesized composites were tested in terms of their physicochemical and biological features. Results: Spherical structures with sizes of about 200 nm and encapsulation efficiencies reaching values of approximately 60% were obtained. It was found that the resulting particles exhibit stability over time. The antibacterial activity of the developed materials against Staphylococcus aureus was established. Moreover, in vitro cell culture study revealed that the surfaces of all prepared systems are biocompatible as they supported the proliferation and adhesion of the model MG-63 cells. In addition, we have demonstrated significantly prolonged VAN release while minimizing the initial burst effect for the composites compared to bare nanoparticles and verified their desired physicochemical features during swellability, and degradation experiments. Conclusion: It is expected that the developed herein system will enable direct delivery of the antibiotic at an exposed to infections surgical site, providing drugs sustained release and thus will reduce the risk of systemic toxicity. This strategy would both inhibit biofilm formation and accelerate the healing process.


Anti-Bacterial Agents , Chitosan , Hydrogels , Staphylococcus aureus , Vancomycin , Vancomycin/chemistry , Vancomycin/pharmacology , Vancomycin/administration & dosage , Vancomycin/pharmacokinetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/administration & dosage , Hydrogels/chemistry , Hydrogels/pharmacology , Staphylococcus aureus/drug effects , Humans , Chitosan/chemistry , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Drug Carriers/chemistry , Collagen/chemistry , Collagen/pharmacology , Particle Size , Drug Liberation , Surgical Wound Infection/prevention & control , Surgical Wound Infection/drug therapy , Microbial Sensitivity Tests , Biofilms/drug effects
5.
Biomacromolecules ; 25(5): 3190-3199, 2024 May 13.
Article En | MEDLINE | ID: mdl-38693753

Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.


Anti-Bacterial Agents , Nanoparticles , Nitric Oxide , Reactive Oxygen Species , Reactive Oxygen Species/metabolism , Nitric Oxide/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mice , Animals , RAW 264.7 Cells , Nanoparticles/chemistry , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Immunotherapy/methods , Vancomycin/pharmacology , Vancomycin/chemistry , Vancomycin/administration & dosage , Bacterial Infections/drug therapy , Trehalose/chemistry , Trehalose/pharmacology
6.
Cell Rep ; 43(4): 114082, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38583155

Infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are alarmingly common, and treatment is confined to last-line antibiotics. Vancomycin is the treatment of choice for MRSA bacteremia, and treatment failure is often associated with vancomycin-intermediate S. aureus isolates. The regulatory 3' UTR of the vigR mRNA contributes to vancomycin tolerance and upregulates the autolysin IsaA. Using MS2-affinity purification coupled with RNA sequencing, we find that the vigR 3' UTR also regulates dapE, a succinyl-diaminopimelate desuccinylase required for lysine and peptidoglycan synthesis, suggesting a broader role in controlling cell wall metabolism and vancomycin tolerance. Deletion of the 3' UTR increased virulence, while the isaA mutant is completely attenuated in a wax moth larvae model. Sequence and structural analyses of vigR indicated that the 3' UTR has expanded through the acquisition of Staphylococcus aureus repeat insertions that contribute sequence for the isaA interaction seed and may functionalize the 3' UTR.


3' Untranslated Regions , Staphylococcal Infections , Staphylococcus aureus , Animals , 3' Untranslated Regions/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Gene Expression Regulation, Bacterial , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Methicillin-Resistant Staphylococcus aureus/drug effects , Moths/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Staphylococcus aureus/drug effects , Vancomycin/pharmacology , Virulence/genetics
7.
J Appl Microbiol ; 135(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38587823

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Acrolein , Acrolein/analogs & derivatives , Anti-Bacterial Agents , Corynebacterium , Drug Resistance, Multiple, Bacterial , Drug Synergism , Microbial Sensitivity Tests , Monoterpenes , Oils, Volatile , Anti-Bacterial Agents/pharmacology , Corynebacterium/drug effects , Oils, Volatile/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Acrolein/pharmacology , Monoterpenes/pharmacology , Cymenes/pharmacology , Ciprofloxacin/pharmacology , Gentamicins/pharmacology , Vancomycin/pharmacology , Linezolid/pharmacology , Limonene/pharmacology , Eucalyptol/pharmacology , Thymol/pharmacology , Clindamycin/pharmacology , Humans , Penicillins/pharmacology , Terpenes/pharmacology , Cyclohexenes/pharmacology , Corynebacterium Infections/microbiology
8.
ACS Infect Dis ; 10(5): 1696-1710, 2024 May 10.
Article En | MEDLINE | ID: mdl-38577780

Treatment of microbial infections is becoming daunting because of widespread antimicrobial resistance. The treatment challenge is further exacerbated by the fact that certain infectious bacteria invade and localize within host cells, protecting the bacteria from antimicrobial treatments and the host's immune response. To survive in the intracellular niche, such bacteria deploy surface receptors similar to host cell receptors to sequester iron, an essential nutrient for their virulence, from host iron-binding proteins, in particular lactoferrin and transferrin. In this context, we aimed to target lactoferrin receptors expressed by macrophages and bacteria; as such, we prepared and characterized lactoferrin nanoparticles (Lf-NPs) loaded with a dual drug combination of antimicrobial natural alkaloids, berberine or sanguinarine, with vancomycin or imipenem. We observed increased uptake of drug-loaded Lf-NPs by differentiated THP-1 cells with up to 90% proportion of fluorescent cells, which decreased to about 60% in the presence of free lactoferrin, demonstrating the targeting ability of Lf-NPs. The encapsulated antibiotic drug cocktail efficiently cleared intracellular Staphylococcus aureus (Newman strain) compared to the free drug combinations. However, the encapsulated drugs and the free drugs alike exhibited a bacteriostatic effect against the hard-to-treat Mycobacterium abscessus (smooth variant). In conclusion, the results of this study demonstrate the potential of lactoferrin nanoparticles for the targeted delivery of antibiotic drug cocktails for the treatment of intracellular bacteria.


Anti-Bacterial Agents , Lactoferrin , Nanoparticles , Staphylococcus aureus , Lactoferrin/chemistry , Lactoferrin/pharmacology , Humans , Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , THP-1 Cells , Macrophages/drug effects , Vancomycin/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems , Microbial Sensitivity Tests
9.
J Microbiol Biotechnol ; 34(4): 828-837, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38668685

Vancomycin (VAN) and metronidazole (MTR) remain the current drugs of choice for the treatment of non-severe Clostridioides difficile infection (CDI); however, while their co-administration has appeared in clinical treatment, the efficacy varies greatly and the mechanism is unknown. In this study, a CDI mouse model was constructed to evaluate the therapeutic effects of VAN and MTR alone or in combination. For a perspective on the intestinal ecology, 16S rRNA amplicon sequencing and non-targeted metabolomics techniques were used to investigate changes in the fecal microbiota and metabolome of mice under the co-administration treatment. As a result, the survival rate of mice under co-administration was not dramatically different compared to that of single antibiotics, and the former caused intestinal tissue hyperplasia and edema. Co-administration also significantly enhanced the activity of amino acid metabolic pathways represented by phenylalanine, arginine, proline, and histidine, decreased the level of deoxycholic acid (DCA), and downregulated the abundance of beneficial microbes, such as Bifidobacterium and Akkermansia. VAN plays a dominant role in microbiota regulation in co-administration. In addition, co-administration reduced or increased the relative abundance of antibiotic-sensitive bacteria, including beneficial and harmful microbes, without a difference. Taken together, there are some risks associated with the co-administration of VAN and MTR, and this combination mode should be used with caution in CDI treatment.


Anti-Bacterial Agents , Clostridioides difficile , Clostridium Infections , Disease Models, Animal , Drug Therapy, Combination , Feces , Gastrointestinal Microbiome , Metronidazole , RNA, Ribosomal, 16S , Vancomycin , Animals , Metronidazole/administration & dosage , Vancomycin/administration & dosage , Vancomycin/pharmacology , Clostridium Infections/drug therapy , Clostridium Infections/microbiology , Gastrointestinal Microbiome/drug effects , Mice , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Clostridioides difficile/drug effects , Clostridioides difficile/genetics , RNA, Ribosomal, 16S/genetics , Feces/microbiology , Intestines/microbiology , Intestines/drug effects , Male , Bacteria/classification , Bacteria/genetics , Bacteria/drug effects , Metabolome/drug effects
10.
Medicine (Baltimore) ; 103(16): e37860, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38640320

Staphylococcus aureus is an important human pathogen that has a major impact on public health. The objective of the present work was to determine the prevalence and the pattern of antibiotic susceptibility in S aureus (MRSA) isolates from the King Khalid University Hospital (KKUH) in Riyadh, Saudi Arabia. The isolates were collected from different body sites of infection and the antibiotic susceptibility was confirmed on the Vitek 2 system. A total of 371 MRSA isolates from clinical samples were received over a 12-month period from January 2021 to December 2021. The results showed that infection was predominant among males (55.8%) and most of the isolates occurred in the older age groups, with a mean age of 43.7 years and an age span from <1 to 89 years old. The majority (34.5%) recovered from wound infection followed by (14.6%) from blood. We have observed peaks of MRSA infections during the autumn, especially in September and November. All MRSA isolates were resistant to Amoxicillin + clavulanic acid, Ampicillin, Imipenem, Oxacillin, Cloxacillin, and Penicillin while all isolates were sensitive to Daptomycin and Nitrofurantoin. Furthermore, Vancomycin was resistant in (0.3%) of MRSA isolates, and (2.9%) was resistant to Linezolid. The current study concluded that MRSA strains had developed resistance toward 24 tested antibiotics, including the previous effective drugs vancomycin and linezolid. Therefore, there is an urgent need for continuous review of infection control practices to prevent any further spread of resistant strains.


Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Male , Humans , Aged , Adult , Infant , Child, Preschool , Child , Adolescent , Young Adult , Middle Aged , Aged, 80 and over , Vancomycin/pharmacology , Linezolid/pharmacology , Saudi Arabia/epidemiology , Tertiary Care Centers , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcus aureus , Staphylococcal Infections/drug therapy , Staphylococcal Infections/epidemiology , Amoxicillin-Potassium Clavulanate Combination/pharmacology
11.
Mikrobiyol Bul ; 58(2): 125-134, 2024 Apr.
Article Tr | MEDLINE | ID: mdl-38676581

The World Health Organization has included the problem of antibiotic resistance among the top 10 important health problems in the world. Treatment of infectious diseases has become more difficult due to the spread of antibiotic resistance between bacteria via transposable elements. Vancomycin-resistant enterococci (VRE) are of critical medical and public health importance due to their association with serious nosocomial infections and high risk of death. One of the most important features of VREs is that they have multiple antibiotic resistance and treatment options are reduced. Therefore, new treatment methods are needed. The vanA gene constitutes the building block of the vancomycin resistance mechanism and causes high resistance to vancomycin. In this study, it was aimed to investigate the neutralization of the vancomycin resistance mechanism by creating vanA antisense RNA (asRNA). The vanA positive VRE50 strain in our culture collection which was isolated from the clinical sample, was used to amplify the vanA gene by polymerase chain reaction (PCR). The amplified vanA amplicon was inserted inversely into the pUC19 plasmid by means of the enzyme cutting sites in the primers used. The resulting plasmid was combined with the pAT392 plasmid which can replicate in gram-positive bacteria and a fusion plasmid was created. The fusion plasmid whose orientation was confirmed, was transferred to the wild strain VRE50 by electroporation method. Minimum inhibitory concentration (MIC) values of transformed VRE (tVRE50) and wild type VRE50 strains used as control were determined by the E-Test method. The vancomycin MIC value of the wild type VRE50 strain was determined as 1024 µg/mL and that of the tVRE50 strain was 32 µg/mL and it was determined that the vancomycin resistance of the tVRE50 strain decreased with asRNA (antisense RNA). Antisense RNA technology is an important method for neutralizing the expression of genes. This study showed that neutralization of the vancomycin resistance gene may provide a lower MIC value in a vancomycin-resistant enterococcus strain and lead to increased susceptibility. This new approach provides a new method for VRE treatment by neutralizing the vancomycin resistance mechanism. The result obtained in this study needs to be supported by in vivo tests.


Bacterial Proteins , Carbon-Oxygen Ligases , RNA, Antisense , Vancomycin-Resistant Enterococci , Vancomycin , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Carbon-Oxygen Ligases/genetics , RNA, Antisense/genetics , Bacterial Proteins/genetics , Humans , Vancomycin/pharmacology , Plasmids/genetics , Vancomycin Resistance/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Gene Silencing
12.
Gut Microbes ; 16(1): 2337312, 2024.
Article En | MEDLINE | ID: mdl-38591915

Clostridioides difficile causes a range of debilitating intestinal symptoms that may be fatal. It is particularly problematic as a hospital-acquired infection, causing significant costs to the health care system. Antibiotics, such as vancomycin and fidaxomicin, are still the drugs of choice for C. difficile infections, but their effectiveness is limited, and microbial interventions are emerging as a new treatment option. This paper focuses on alternative treatment approaches, which are currently in various stages of development and can be divided into four therapeutic strategies. Direct killing of C. difficile (i) includes beside established antibiotics, less studied bacteriophages, and their derivatives, such as endolysins and tailocins. Restoration of microbiota composition and function (ii) is achieved with fecal microbiota transplantation, which has recently been approved, with standardized defined microbial mixtures, and with probiotics, which have been administered with moderate success. Prevention of deleterious effects of antibiotics on microbiota is achieved with agents for the neutralization of antibiotics that act in the gut and are nearing regulatory approval. Neutralization of C. difficile toxins (iii) which are crucial virulence factors is achieved with antibodies/antibody fragments or alternative binding proteins. Of these, the monoclonal antibody bezlotoxumab is already in clinical use. Immunomodulation (iv) can help eliminate or prevent C. difficile infection by interfering with cytokine signaling. Small-molecule agents without bacteriolytic activity are usually selected by drug repurposing and can act via a variety of mechanisms. The multiple treatment options described in this article provide optimism for the future treatment of C. difficile infection.


Clostridioides difficile , Clostridium Infections , Gastrointestinal Microbiome , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Fecal Microbiota Transplantation , Vancomycin/pharmacology , Clostridium Infections/drug therapy , Clostridium Infections/prevention & control
13.
J Nepal Health Res Counc ; 21(4): 616-622, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38616592

BACKGROUND: Staphylococcus aureus (S.aureus) is an emerging antibiotic resistant bacterium responsible for various infections in human. Resistance to methicillin and vancomycin are of prime concern in S. aureus. The study aims to determine the minimum inhibitory concentration (MIC) of Vancomycin and evaluate the existence of mecA and vanA genes, associated with antibiotic resistance. METHODS: Clinical specimens from three Kathmandu hospitals were processed and S. aureus was identified using conventional microbiological procedures. MRSA was phenotypically identified with cefoxitin (30µg) disc diffusion, while vancomycin susceptibility was assessed using the Ezy MICTM stripes. The mecA and vanA genes were detected by polymerase chain reaction (PCR). RESULTS: Out of 266 S. aureus samples from various clinical specimen subjected for analysis, 77 (28.9%) were found methicillin-resistant (MRSA) and 10 (3.8%) were observed vancomycin-resistant (VRSA). Vancomycin resistant isolates showed a significant correlation between resistance to ampicillin, chloramphenicol, and cefoxitin. The mecA gene was found in 39 of the MRSA isolates, having 50.64% of MRSA cases, while the vanA gene was detected in 4 of the VRSA cases, constituting 40% of VRSA occurrences. CONCLUSIONS: The strains with higher vancomycin minimum inhibitory concentration values (≥ 1.5 µg/ml) displayed increased resistance rates to various antibiotics compared to strains with lower minimum inhibitory concentration values (< 1.5 µg/ml). The presence of vanA genes was strongly associated (100%) with vancomycin resistance, while the 10.3% mecA gene was identified from MRSA having resistance towards vancomycin also.


Staphylococcal Infections , Vancomycin , Humans , Vancomycin/pharmacology , Staphylococcus aureus/genetics , Cefoxitin/pharmacology , Nepal , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology
14.
ACS Infect Dis ; 10(4): 1327-1338, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38567846

Due to the widespread abuse of antibiotics, drug resistance in Enterococcus has been increasing. However, the speed of antibiotic discovery cannot keep pace with the acquisition of bacterial resistance. Thus, drug repurposing is a proposed strategy to solve the crises. Lusutrombopag (LP) has been approved as a thrombopoietin receptor agonist by the Food and Drug Administration. This study demonstrated that LP exhibited significant antimicrobial activities against vancomycin-resistant Enterococcus in vitro with rare resistance occurrence. Further, LP combined with tobramycin exhibited synergistic antimicrobial effects in vitro and in vivo against Enterococcus. No in vitro or in vivo detectable toxicity was observed when using LP. Mechanism studies indicated that the disrupted proton motive force may account for LP's antimicrobial activity. In summary, these results demonstrate that LP has the previously undocumented potential to serve as an antibacterial agent against refractory infections caused by Enterococcus.


Aminoglycosides , Cinnamates , Thiazoles , Vancomycin-Resistant Enterococci , United States , Aminoglycosides/pharmacology , Vancomycin/pharmacology , Pharmaceutical Preparations , Drug Repositioning , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
15.
Nat Commun ; 15(1): 2993, 2024 Apr 06.
Article En | MEDLINE | ID: mdl-38582763

Bacteriophage therapy is a promising approach to address antimicrobial infections though questions remain regarding the impact of the immune response on clinical effectiveness. Here, we develop a mouse model to assess phage treatment using a cocktail of five phages from the Myoviridae and Siphoviridae families that target Vancomycin-Resistant Enterococcus gut colonization. Phage treatment significantly reduces fecal bacterial loads of Vancomycin-Resistant Enterococcus. We also characterize immune responses elicited following administration of the phage cocktail. While minimal innate responses are observed after phage administration, two rounds of treatment induces phage-specific neutralizing antibodies and accelerate phage clearance from tissues. Interestingly, the myophages in our cocktail induce a more robust neutralizing antibody response than the siphophages. This anti-phage immunity reduces the effectiveness of the phage cocktail in our murine model. Collectively, this study shows phage-specific immune responses may be an important consideration in the development of phage cocktails for therapeutic use.


Bacteriophages , Vancomycin-Resistant Enterococci , Humans , Animals , Mice , Bacteriophages/physiology , Vancomycin/pharmacology , Disease Models, Animal , Myoviridae/physiology , Anti-Bacterial Agents/pharmacology
16.
Talanta ; 274: 126081, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38613947

The development of efficient, accurate, and high-throughput technology for gut microbiota sensing holds great promise in the maintenance of health and the treatment of diseases. Herein, we developed a rapid fluorescent sensor array based on surface-engineered silver nanoparticles (AgNPs) and vancomycin-modified gold nanoclusters (AuNCs@Van) for gut microbiota sensing. By controlling the surface of AgNPs, the recognition ability of the sensor can be effectively improved. The sensor array was used to successfully discriminate six gut-derived bacteria, including probiotics, neutral, and pathogenic bacteria and even their mixtures. Significantly, the sensing system has also been successfully applied to classify healthy individuals and colorectal cancer (CRC) patients rapidly and accurately within 30 min, demonstrating its clinically relevant specificity.


Colorectal Neoplasms , Gastrointestinal Microbiome , Gold , Metal Nanoparticles , Silver , Colorectal Neoplasms/microbiology , Colorectal Neoplasms/diagnosis , Humans , Silver/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Vancomycin/pharmacology , Surface Properties , Fluorescent Dyes/chemistry
17.
Antimicrob Agents Chemother ; 68(5): e0143923, 2024 May 02.
Article En | MEDLINE | ID: mdl-38591854

Phage therapy has (re)emerged as a serious possibility for combating multidrug-resistant bacterial infections, including those caused by vancomycin-resistant Enterococcus faecium strains. These opportunistic pathogens belong to a specific clonal complex 17, against which relatively few phages have been screened. We isolated a collection of 21 virulent phages growing on these vancomycin-resistant isolates. Each of these phages harbored a typical narrow plaquing host range, lysing at most 5 strains and covering together 10 strains of our panel of 14 clinical isolates. To enlarge the host spectrum of our phages, the Appelmans protocol was used. We mixed four out of our most complementary phages in a cocktail that we iteratively grew on eight naive strains from our panel, of which six were initially refractory to at least three of the combined phages. Fifteen successive passages permitted to significantly improve the lytic activity of the cocktail, from which phages with extended host ranges within the E. faecium species could be isolated. A single evolved phage able to kill up to 10 of the 14 initial E. faecium strains was obtained, and it barely infected nearby species. All evolved phages had acquired point mutations or a recombination event in the tail fiber genetic region, suggesting these genes might have driven phage evolution by contributing to their extended host spectra.


Bacteriophages , Enterococcus faecium , Host Specificity , Vancomycin-Resistant Enterococci , Enterococcus faecium/drug effects , Bacteriophages/genetics , Vancomycin-Resistant Enterococci/drug effects , Phage Therapy/methods , Gram-Positive Bacterial Infections/microbiology , Vancomycin Resistance , Vancomycin/pharmacology , Humans , Anti-Bacterial Agents/pharmacology
18.
Int Immunopharmacol ; 132: 111780, 2024 May 10.
Article En | MEDLINE | ID: mdl-38603853

BACKGROUND: Glycopeptide antibiotic vancomycin is a bactericidal antibiotic available for the infection to Staphylococcus aureus (SA), however, SA has a strong adaptive capacity and thereby acquires resistance to vancomycin. This study aims to illuminate the possible molecular mechanism of vancomycin resistance of SA based on the 16S rRNA sequencing data and microarray profiling data. METHODS: 16S rRNA sequencing data of control samples and urinary tract infection samples were retrieved from the EMBL-EBI (European Molecular Biology Laboratory - European Bioinformatics Institute) database. Correlation of gut flora and clinical indicators was evaluated. The possible targets regulated by SA were predicted by microarray profiling and subjected to KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. CXCL10 gene knockout and overexpression were introduced to evaluate the effect of CXCL10 on the virulence of SA and the resistance to vancomycin. SA strains were co-cultured with urethral epithelial cells in vitro. The presence of SA virulence factors was detected using PCR. Biofilm formation of SA strains was assessed using the microtiter plate method. Furthermore, the antibiotic sensitivity of SA strains was evaluated through vancomycin testing. RESULTS: Gut flora and its species abundance had significant difference between urinary tract infection and control samples. SA was significantly differentially expressed in urinary tract infection samples. Resistance of SA to vancomycin mainly linked to the D-alanine metabolism pathway. SA may participate in the occurrence of urinary tract infection by upregulating CXCL10. In addition, CXCL10 mainly affected the SA resistance to vancomycin through the TLR signaling pathway. In vitro experimental results further confirmed that the overexpression of CXCL10 in SA increased SA virulence and decreased its susceptibility to vancomycin. In vitro experimental validation demonstrated that the knockout of CXCL10 in urethral epithelial cells enhanced the sensitivity of Staphylococcus aureus (SA) to vancomycin. CONCLUSION: SA upregulates the expression of CXCL10 in urethral epithelial cells, thereby activating the TLR signaling pathway and promoting resistance to glycopeptide antibiotics in SA.


Anti-Bacterial Agents , Chemokine CXCL10 , Staphylococcal Infections , Staphylococcus aureus , Urinary Tract Infections , Vancomycin Resistance , Vancomycin , Staphylococcus aureus/drug effects , Staphylococcus aureus/genetics , Vancomycin/pharmacology , Humans , Staphylococcal Infections/microbiology , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Vancomycin Resistance/genetics , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Biofilms/drug effects , Gastrointestinal Microbiome/drug effects , RNA, Ribosomal, 16S/genetics , Epithelial Cells/microbiology , Epithelial Cells/drug effects , Female , Male
19.
Antimicrob Agents Chemother ; 68(5): e0115923, 2024 May 02.
Article En | MEDLINE | ID: mdl-38506549

Vancomycin heteroresistance is prone to missed detection and poses a risk of clinical treatment failure. We encountered one clinical Enterococcus faecium strain, SRR12, that carried a complete vanM gene cluster but was determined as susceptible to vancomycin using the broth microdilution method. However, distinct subcolonies appeared within the clear zone of inhibition in the E-test assay, one of which, named SRR12-v1, showed high-level resistance to vancomycin. SRR12 was confirmed as heteroresistant to vancomycin using population analysis profiling and displayed "revive" growth curves with a lengthy lag phase of over 13 hours when exposed to 2-32 mg/L vancomycin. The resistant subcolony SRR12-v1 was found to carry an identical vanM gene cluster to that of SRR12 but a significantly increased vanM copy number in the genome. Long-read whole genome sequencing revealed that a one-copy vanM gene cluster was located on a pELF1-like linear plasmid in SRR12. In comparison, tandem amplification of the vanM gene cluster jointed with IS1216E was seated on a linear plasmid in the genome of SRR12-v1. These amplifications of the vanM gene cluster were demonstrated as unstable and would decrease accompanied by fitness reversion after serial passaging for 50 generations under increasing vancomycin pressure or without antibiotic pressure but were relatively stable under constant vancomycin pressure. Further, vanM resistance in resistant variants was verified to be carried by conjugative plasmids with variable sizes using conjugation assays and S1-pulsed field gel electrophoresis blotting, suggesting the instability/flexibility of vanM cluster amplification in the genome and an increased risk of vanM resistance dissemination.


Anti-Bacterial Agents , Enterococcus faecium , Microbial Sensitivity Tests , Multigene Family , Plasmids , Vancomycin Resistance , Vancomycin , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Plasmids/genetics , Vancomycin/pharmacology , Vancomycin Resistance/genetics , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Humans , Whole Genome Sequencing
20.
Antimicrob Agents Chemother ; 68(5): e0171623, 2024 May 02.
Article En | MEDLINE | ID: mdl-38506550

Outbreaks caused by vancomycin-resistant enterococci that transcend jurisdictional boundaries are occurring worldwide. This study focused on a vancomycin-resistant enterococcus outbreak that occurred between 2018 and 2021 across two cities in Hiroshima, Japan. The study involved genetic and phylogenetic analyses using whole-genome sequencing of 103 isolates of vancomycin-resistant enterococci to identify the source and transmission routes of the outbreak. Phylogenetic analysis was performed using core genome multilocus sequence typing and core single-nucleotide polymorphisms; infection routes between hospitals were inferred using BadTrIP. The outbreak was caused by Enterococcus faecium sequence type (ST) 80 carrying the vanA plasmid, which was derived from strain A10290 isolated in India. Of the 103 isolates, 93 were E. faecium ST80 transmitted across hospitals. The circular vanA plasmid of the Hiroshima isolates was similar to the vanA plasmid of strain A10290 and transferred from E. faecium ST80 to other STs of E. faecium and other Enterococcus species by conjugation. The inferred transmission routes across hospitals suggest the existence of a central hospital serving as a hub, propagating vancomycin-resistant enterococci to multiple hospitals. Our study highlights the importance of early intervention at the key central hospital to prevent the spread of the infection to small medical facilities, such as nursing homes, with limited medical resources and a high number of vulnerable individuals.


Disease Outbreaks , Enterococcus faecium , Gram-Positive Bacterial Infections , Multilocus Sequence Typing , Phylogeny , Plasmids , Vancomycin-Resistant Enterococci , Whole Genome Sequencing , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Japan/epidemiology , Humans , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Plasmids/genetics , Gram-Positive Bacterial Infections/transmission , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Cross Infection/microbiology , Cross Infection/transmission , Cross Infection/epidemiology , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Carbon-Oxygen Ligases/genetics , Microbial Sensitivity Tests , Polymorphism, Single Nucleotide , Hospitals , Vancomycin/pharmacology , Genome, Bacterial/genetics
...